

RADIAN MEASURE

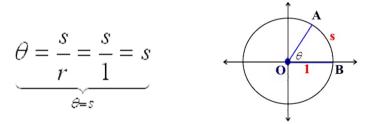
- An arc of a circle is a "portion" of the circumference of the circle.
- The **length of an arc** is simply the length of its "portion" of the circumference. Actually, the circumference itself can be considered an arc length.
- The length of an arc (or arc length) is traditionally symbolized by s.
- In the diagram at the right, it can be said that "AB subtends angle θ". Definition: subtend - to be opposite to
- The **radian measure** θ of a central angle of a circle is defined as the ratio of the length of the arc the angle subtends, **s**, divided by the radius of the circle, *r*.

$$\theta = \frac{s}{r} = \frac{\text{length of subtended arc}}{\text{length of radius}}$$

From this definition we can obtain:

RADIANS
Arc length of a circle:
arc length = θ r
 $s = \theta$ rDEGREES
Arc length of a circle:
arc length = $\theta \cdot \frac{\pi}{180} \cdot r$

• When working in the unit circle, with radius 1, the length of the arc equals the radian measure of the angle.



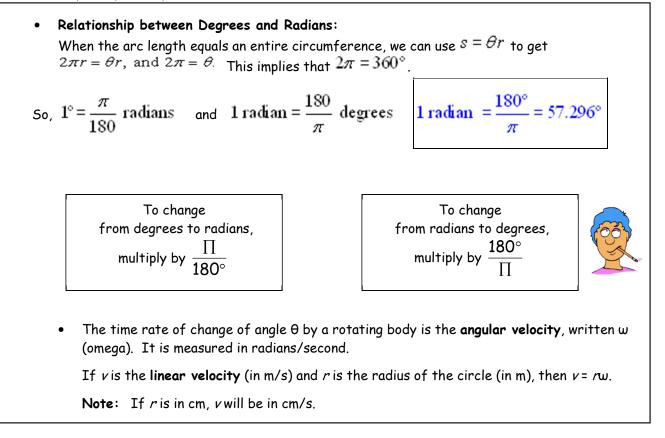
• A radian is the measure of an angle θ that, when drawn as a central angle, subtends an arc whose length equals the length of the radius of the circle.

$$\theta = \frac{s}{r} = \frac{r}{r} = 1$$

0.

B

(COD = 1 radian)



Examples:

1. Convert 50° to radians.

2. Convert
$$\frac{\prod}{6}$$
 to degrees.

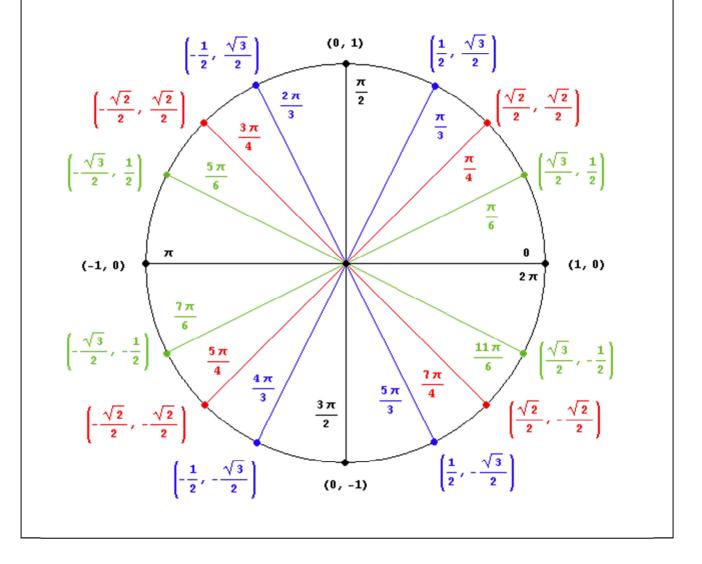
3. How long is the arc subtended by an angle of $\frac{7 \prod}{4}$ radians on a circle of radius 20 cm?

4. A bicycle with tires 90 cm in diameter is travelling at 25 km/h. What is the angular velocity of the tire in radians per second?

\$4.2 TRIGONOMETRIC RATIOS & SPECIAL ANGLES

KEY CONCEPTS

• Special angles between 0 and 2∏ together with their sine and cosine are displayed on a unit circle. These special angles may be useful in solving trigonometry problems.



§4.3 EQUIVALENT TRIGONOMETRIC EXPRESSIONS

KEY CONCEPTS

- Equivalent trigonometric expressions are expressions that yield the same value for all values of the variable.
- An **identity** is an equation that is true for all values of the variable for which the expressions on both sides of the equation are defined.
- An identity involving trigonometric expressions is called a trigonometric identity.

Trigonometric Identities Featuring $\frac{\prod}{2}$			
Cofunction Identities		More Identities Involving $\frac{\prod}{2}$	
$\sin x = \cos \left(\frac{\Pi}{2} - x \right)$	$\cos x = \sin \left(\frac{\Pi}{2} - x \right)$	$\sin\left(x+\frac{\Pi}{2}\right)=\cos x$	$\cos\left(x+\frac{\Pi}{2}\right)=-\sin x$
$\tan x = \cot\left(\frac{\Pi}{2} - x\right)$	$\cot x = \tan\left(\frac{\Pi}{2} - x\right)$	$\tan\left(x+\frac{\Pi}{2}\right) = -\cot x$	$\cot\left(x+\frac{\Pi}{2}\right) = -\tan x$
$\csc \boldsymbol{x} = \sec\left(\frac{\Pi}{2} - \boldsymbol{x}\right)$	$\sec x = \csc\left(\frac{\prod}{2} - x\right)$	$\csc\left(x+\frac{\Pi}{2}\right) = \sec x$	$\sec\left(x+\frac{\Pi}{2}\right)=-\csc x$

Examples:

1. Given that $\cot \frac{2\prod}{7} \approx 0.7975$, use equivalent expressions to evaluate the following to four decimal places.

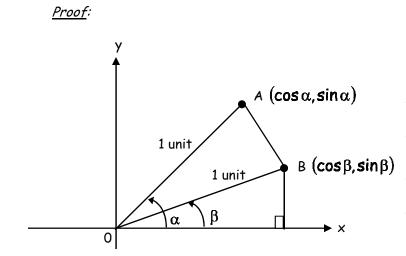
a)
$$\tan \frac{3\Pi}{14}$$
 b) $\tan \frac{11\Pi}{14}$

\$4.4 <u>COMPOUND ANGLE FORMULAS</u>

KEY CONCEPTS

- A trigonometric expression that depends on two or more angles is known as a **compound angle expression**.
- Subtraction Formula (Cosine)

```
\cos (A - B) = \cos A \cos B + \sin A \sin B
```



We will use this diagram to help prove the subtraction formula.

In general, we will compute c^2 in two ways (using the Law of Cosines and also using the distance formula) and compare the two results. Addition Formula (Cosine)

 $\cos (A + B) = \cos A \cos B - \sin A \sin B$ Proof: $\cos(A - B) = \cos A \cos B + \sin A \sin B$ *k* subtraction formula for Cosine $\cos (A - (-B)) = \cos A \cos (-B) - \sin A \sin (-B)$ replacing b with -b $= \cos A \cos B + \sin A \sin B$ { negative angles Addition Formula (Sine) sin (A + B) = sin A cos B + cos A sin BProof: Recall the cofunction identities $\sin x = \cos\left(\frac{\Pi}{2} - x\right)$ and $\cos x = \sin\left(\frac{\Pi}{2} - x\right)$. Apply these and the subtraction formula for the cosine. $\sin(A+B) = \cos\left(\frac{\Pi}{2} - (A+B)\right)$ [{] apply a cofunction idenity $=\cos\left(\left(\frac{\prod}{2}-A\right)-B\right)$ *}* regroup the terms in the brackets $= \cos\left(\frac{\Pi}{2} - A\right) \cos B + \sin\left(\frac{\Pi}{2} - A\right) \sin B \quad \text{$$\ $$apply subtraction formula for Cosine$}$ = sin A cos B + cos A sin B Subtraction Formula (Sine) sin (A - B) = sin A cos B - cos A sin BProof: sin(A + B) = sin A cos B + cos A sin B{ addition formula for Sine sin (A - (-B)) = sin A cos (-B) + cos A sin (-B)^k replacing B with -B

[}] negative angles

<u>Example</u>:

1. Use an appropriate compound angle formula to determine an exact value for $\cos\left(\frac{511}{12}\right)$.

= sin A cos B - cos A sin B

2. Use the appropriate compound angle formula to express the following as a single trigonometric function, and then determine an exact value for it.

$$\sin\frac{\Pi}{2}\cos\frac{\Pi}{4} - \cos\frac{\Pi}{2}\sin\frac{\Pi}{4}$$

3. Angles x and y are located in the first quadrant such that $\sin y = \frac{24}{25}$ and $\cos x = \frac{3}{5}$. Determine an exact value for $\sin(x - y)$.

§4.5

PROVE TRIGONOMETRIC IDENTITIES

KEY CONCEPTS

In this section, you will use the following basic trigonometric identities to prove other • identities.

Pythagorean Identity

 $\cos^2 \alpha + \sin^2 \alpha = 1$

Quotient Identity

Reciprocal Identities

 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

 $\csc \alpha = \frac{1}{\sin \alpha}$ $\sec \alpha = \frac{1}{\cos \alpha}$ $\cot \alpha = \frac{1}{\tan \alpha}$

Compound Angle Formulas

sin(A - B) = sin A cos B - cos A sin Bsin (A + B) = sin A cos B + cos A sin B $\cos(A - B) = \cos A \cos B + \sin A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$

Double Angle Identities

$$sin2\theta = 2sin \theta \cos \theta$$

$$cos2\theta = cos^2 \theta - sin^2 \theta$$

$$= 2cos^2 \theta - 1$$

$$= 1 - 2sin^2 \theta$$

Examples:

1. Prove $\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} - \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = 2\tan 2\theta.$

MHF4U - Prepared by Mrs. Snyder

2. Prove
$$\frac{1-\sin 2\theta}{\cos 2\theta} = \frac{\cos 2\theta}{1+\sin 2\theta}$$
.